AI Tooling¶
This guide covers setting up AI assistants and MCP servers for development workflows.
Prerequisites¶
- Claude Code installed (
brew install anthropic-cli/tap/claude-code) - Vault access configured (see Environment Setup)
- Network access to cluster services
Claude Code Setup¶
Claude Code is the primary AI assistant for this repository.
Configuration Files¶
| File | Purpose |
|---|---|
CLAUDE.md |
Repository-specific instructions |
~/.claude/CLAUDE.md |
User-wide preferences |
~/.claude/mcp.json |
MCP server configuration |
Key Skills¶
Skills are invoked via the Skill tool. Check for applicable skills before responding:
| Skill | Use Case |
|---|---|
superpowers:brainstorming |
Feature planning and design |
superpowers:systematic-debugging |
Bug investigation |
superpowers:writing-plans |
Multi-step implementation |
superpowers:using-git-worktrees |
Isolated feature development |
commit-commands:commit |
Git commits |
pr-review-toolkit:review-pr |
PR reviews |
grafana |
Dashboard, Loki logs, Prometheus queries |
MCP Servers¶
Model Context Protocol servers extend Claude's capabilities.
Active Servers¶
| Server | Purpose | Priority |
|---|---|---|
| Filesystem | File read/write operations | MUST use for file ops |
| Kubernetes | Cluster investigation (readonly) | Pods, logs, events |
| Terraform | State and workspace operations | Terraform Cloud |
| Exa | Intelligent web search | Research |
| Firecrawl | Web scraping | Content extraction |
| Context7 | Library documentation | API docs |
MCP Configuration¶
MCP servers can be configured at two levels:
| Location | Scope | Use Case |
|---|---|---|
~/.claude.json |
Global (all projects) | Personal MCP servers |
.mcp.json |
Project-specific | Repository-shared MCP servers |
Add to ~/.claude.json (global) or .mcp.json (project root):
{
"mcpServers": {
"kubernetes-mcp-server": {
"command": "mcp-k8s",
"args": ["--context", "fzymgc-house"]
},
"grafana": {
"command": "mcp-grafana",
"env": {
"GRAFANA_URL": "https://grafana.fzymgc.house",
"GRAFANA_SERVICE_ACCOUNT_TOKEN": "<token-from-vault>"
}
}
}
}
Grafana MCP Server¶
Local installation:
go install github.com/grafana/mcp-grafana/cmd/mcp-grafana@latest
Get token from Vault:
# Viewer token (recommended for most operations)
vault kv get -field=viewer_token secret/fzymgc-house/cluster/grafana/mcp-server
# Editor token (when modifications needed)
vault kv get -field=editor_token secret/fzymgc-house/cluster/grafana/mcp-server
Grafana MCP capabilities:
| Tool | Purpose |
|---|---|
search_dashboards |
Find dashboards by name/tag |
get_dashboard_by_uid |
Retrieve dashboard JSON |
list_datasources |
List configured data sources |
query_prometheus |
Execute PromQL queries |
query_loki |
Execute LogQL queries |
Remote MCP (In-Cluster)¶
Connect to the in-cluster MCP server:
{
"mcpServers": {
"grafana": {
"type": "streamable-http",
"url": "https://mcp.grafana.fzymgc.house/mcp",
"headers": {
"Authorization": "Bearer <token-from-vault>"
}
}
}
}
Workflow Integration¶
Development Workflow¶
- Use
superpowers:brainstormingbefore new features - Create worktree with
superpowers:using-git-worktrees - Use
superpowers:writing-plansfor implementation - Request review with
pr-review-toolkit:review-pr
Cluster Operations¶
- Use Kubernetes MCP for investigation (pods, logs, events)
- Do NOT apply changes directly - ArgoCD manages deployments
- Use
grafanaskill for dashboard and Loki log queries
Key Directives¶
| Rule | Reason |
|---|---|
| MUST use feature branches | Never commit to main |
| MUST check skills before responding | Even 1% chance → invoke skill |
| MUST use Filesystem MCP for file ops | Saves context vs native tools |
| MUST NOT apply kubectl changes | ArgoCD manages deployments |
Verification¶
Test MCP server connectivity:
# Verify Kubernetes MCP
kubectl --context fzymgc-house get nodes
# Verify Grafana access
vault kv get secret/fzymgc-house/cluster/grafana/mcp-server
See Also¶
- Repository CLAUDE.md - Full AI assistant instructions